Thematic Publications


Precision Nutrition and the Microbiome,

Susan Mills 1, Catherine Stanton 2, Jonathan A. Lane 3, Graeme J. Smith 3,* and R. Paul Ross

Part I: Potential Opportunities and Pathways to Commercialisation
The gut microbiota is a highly complex community which evolves and adapts to its host over a lifetime. It has been described as a virtual organ owing to the myriad of functions it performs, including the production of bioactive metabolites, regulation of immunity, energy homeostasis and protection against pathogens. These activities are dependent on the quantity and quality of the microbiota alongside its metabolic potential, which are dictated by a number of factors, including diet and host genetics. In this regard, the gut microbiome is malleable and varies significantly from host to host. In particular, in Part I, we examine the development of the microbiota from birth and its role in health. We investigate the consequences of poor-quality diet in relation to infection and inflammation and discuss diet-derived microbial metabolites which negatively impact health. We look at the role of diet in shaping the microbiome and the influence of specific dietary components, namely protein, fat and carbohydrates, on gut microbiota composition.
Read the full publication


Part II: Current State of the Science
Modulation of the human gut microbiota through probiotics, prebiotics and dietary fibre are recognised strategies to improve health and prevent disease. Yet we are only beginning to understand the impact of these interventions on the gut microbiota and the physiological
consequences for the human host, thus forging the way towards evidence-based scientific validation. However, in many studies a percentage of participants can be defined as ‘non-responders’ and scientists are beginning to unravel what differentiates these from
‘responders;’ and it is now clear that an individual’s baseline microbiota can influence an individual’s response. Thus, microbiome composition can potentially serve as a biomarker to predict responsiveness to interventions, diets and dietary components enabling greater opportunities for its use towards disease prevention and health promotion. 

Read the full publication

This section will redirect you to scientific summaries related to our lines of research, redirecting to external PUBMED publications

Nutrients and perinatal depression: a systematic review.

J Nutr Sci. 2017 Dec 20;6:e61. doi: 10.1017/jns.2017.58. eCollection 2017.
Sparling TM1, Nesbitt RC1, Henschke N1, Gabrysch S1.

Breastfeeding self-efficacy and postpartum depression: a cohort study.

Rev Lat Am Enfermagem. 2018 Sep 6;26:e3035. doi: 10.1590/1518-8345.2110.3035.
[Article in English, Portuguese, Spanish]
Vieira ES1, Caldeira NT2, Eugênio DS3, Lucca MMD4, Silva IA5.

Treatment of Cow’s Milk Protein Allergy.

Pediatr Gastroenterol Hepatol Nutr. 2014 Mar;17(1):1-5. doi: 10.5223/pghn.2014.17.1.1. Epub 2014 Mar 31.
Vandenplas Y1, De Greef E1, Devreker T1

Immune factors in breast milk related to infant milk allergy are independent of maternal atopy.

J Allergy Clin Immunol. 2015 May;135(5):1390-3.e1-6. doi: 10.1016/j.jaci.2014.10.051. Epub 2014 Dec 19.
Järvinen KM1, Suárez-Fariñas M2, Savilahti E3, Sampson HA4, Berin MC4.

Early-life gut microbiome composition and milk allergy resolution.

J Allergy Clin Immunol. 2016 Oct;138(4):1122-1130. doi: 10.1016/j.jaci.2016.03.041. Epub 2016 May 10.
Bunyavanich S1, Shen N2, Grishin A3, Wood R4, Burks W5, Dawson P6, Jones SM7, Leung DYM8, Sampson H3, Sicherer S3, Clemente JC9.

Incidence of cow’s milk protein allergy.

Br J Gen Pract. 2016 Oct;66(651):512. doi: 10.3399/bjgp16X687277.
Sambrook J1.

Human milk oligosaccharides and development of cow’s milk allergy in infants.

J Allergy Clin Immunol. 2017 Feb;139(2):708-711.e5. doi: 10.1016/j.jaci.2016.08.031. Epub 2016 Oct 1.
Seppo AE1, Autran CA2, Bode L2, Järvinen KM3.

Prevention and Management of Cow’s Milk Allergy in Non-Exclusively Breastfed Infants.

Nutrients. 2017 Jul 10;9(7). pii: E731. doi: 10.3390/nu9070731.
Vandenplas Y1.

Food Allergy Prevention and Treatment by Targeted Nutrition.

Ann Nutr Metab. 2018;72 Suppl 3:33-45. doi: 10.1159/000487380. Epub 2018 Apr 9.
Heine RG.

How Different Parts of the World Provide New Insights Into Food Allergy.

Allergy Asthma Immunol Res. 2018 Jul;10(4):290-299. doi: 10.4168/aair.2018.10.4.290.
Tham EH1,2,3, Leung DYM3,4.

The Cow Milk Symptom Score (CoMiSSTM) in presumed healthy infants.

PLoS One. 2018 Jul 18;13(7):e0200603. doi: 10.1371/journal.pone.0200603. eCollection 2018.
Vandenplas Y1, Salvatore S2, Ribes-Koninckx C3, Carvajal E4, Szajewska H5, Huysentruyt K1.

Breastfeeding and the Developmental Origins of Asthma: Current Evidence, Possible Mechanisms, and Future Research Priorities.

Nutrients. 2018 Jul 30;10(8). pii: E995. doi: 10.3390/nu10080995.
Miliku K1,2, Azad MB3,4.

Severity scales of non-IgE-mediated gastrointestinal food allergies in neonates and infants.

Allergol Int. 2018 Sep 22. pii: S1323-8930(18)30101-1. doi: 10.1016/j.alit.2018.08.004. [Epub ahead of print]
Yagi H1, Takizawa T2, Sato K1, Inoue T1, Nishida Y1, Ishige T1, Tatsuki M1, Hatori R1, Kobayashi Y1, Yamada Y3, Arakawa H1.

Effect of synbiotic supplementation on children with atopic dermatitis: an observational prospective study.

Eur J Pediatr. 2018 Dec;177(12):1851-1858. doi: 10.1007/s00431-018-3253-4. Epub 2018 Sep 26.
Ibáñez MD1,2,3, Rodríguez Del Río P4,5,6, González-Segura Alsina D7, Villegas Iglesias V7.

Child Weight Gain Trajectories Linked To Oral Microbiota Composition.

Sci Rep. 2018 Sep 19;8(1):14030. doi: 10.1038/s41598-018-31866-9.
Craig SJC1,2, Blankenberg D3,4, Parodi ACL5, Paul IM1,6, Birch LL7, Savage JS8,9, Marini ME8, Stokes JL6, Nekrutenko A3, Reimherr M10,11, Chiaromonte F12,13,14, Makova KD15,16.

Early maternal perceived stress and children’s BMI: longitudinal impact and influencing factors.

BMC Public Health. 2018 Oct 30;18(1):1211. doi: 10.1186/s12889-018-6110-5.
Leppert B1, Junge KM1, Röder S1, Borte M2, Stangl GI3,4, Wright RJ5, Hilbert A6, Lehmann I7,8, Trump S9,10.

Is It Time to Use Probiotics to Prevent or Treat Obesity?

Nutrients. 2018 Nov 1;10(11). pii: E1613. doi: 10.3390/nu10111613.
Brusaferro A1, Cozzali R2, Orabona C3, Biscarini A4, Farinelli E5, Cavalli E6, Grohmann U7, Principi N8, Esposito S9.

Correlation of salivary immunoglobulin A with Body Mass Index and fat percentage in overweight/obese children.

J Appl Oral Sci. 2018 Nov 8;27:e20180088. doi: 10.1590/1678-7757-2018-0088.
Perez MM1, Pessoa JS1, Ciamponi AL2, Diniz MB1, Santos MTBR1, Alves HHO3, Gorjão R1, Guaré RO1.

Nutritive sucking induces age-specific EEG-changes in 0-24 week-old infants.

Lehtonen J1, Valkonen-Korhonen M2, Georgiadis S3, Tarvainen MP4, Lappi H2, Niskanen JP3, Pääkkönen A5, Karjalainen PA3.

Impact of Maternal Selenium Status on Infant Outcome during the First 6 Months of Life.

Varsi K1, Bolann B2,3, Torsvik I4, Rosvold Eik TC5, Høl PJ6, Bjørke-Monsen AL7.

Effects of Nutritional Interventions during Pregnancy on Infant and Child Cognitive Outcomes: A Systematic Review and Meta-Analysis.

Taylor RM1,2,3, Fealy SM4,5, Bisquera A6,7, Smith R8,9,10, Collins CE11,12,13, Evans TJ14,15, Hure AJ16,17,18.

Maternal DHA Status during Pregnancy Has a Positive Impact on Infant Problem Solving: A Norwegian Prospective Observation Study.

Braarud HC1,2, Markhus MW3, Skotheim S4,5, Stormark KM6,7, Frøyland L8, Graff IE9,10, Kjellevold M11.

The Impact of Maternal Diet during Pregnancy and Lactation on the Fatty Acid Composition of Erythrocytes and Breast Milk of Chilean Women.

Barrera C1, Valenzuela R2,3, Chamorro R4, Bascuñán K5, Sandoval J6,7, Sabag N8, Valenzuela F9, Valencia MP10, Puigrredon C11,12, Valenzuela A13.

Sialic Acid and Sialylated Oligosaccharide Supplementation during Lactation Improves Learning and Memory in Rats.

Oliveros E1,2, Vázquez E3, Barranco A4, Ramírez M5, Gruart A6, Delgado-García JM7, Buck R8, Rueda R9, Martín MJ10.

Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood.

Golubeva AV1, Crampton S2, Desbonnet L1, Edge D3, O’Sullivan O4, Lomasney KW5, Zhdanov AV6, Crispie F7, Moloney RD1, Borre YE1, Cotter PD7, Hyland NP5, O’Halloran KD3, Dinan TG8, O’Keeffe GW9, Cryan JF10.

The Infant Microbiome: Implications for Infant Health and Neurocognitive Development.

Yang I1, Corwin EJ, Brennan PA, Jordan S, Murphy JR, Dunlop A.

Lactoferrin during lactation protects the immature hypoxic-ischemic rat brain.

Ann Clin Transl Neurol. 2014 Dec;1(12):955-67. doi: 10.1002/acn3.138. Epub 2014 Dec 2.
van de Looij Y1, Ginet V2, Chatagner A2, Toulotte A2, Somm E2, Hüppi PS2, Sizonenko SV2.

Lactoferrin and prematurity: a promising milk protein?

Biochem Cell Biol. 2017 Feb;95(1):22-30. doi: 10.1139/bcb-2016-0066. Epub 2016 Oct 26.
Ochoa TJ1,2, Sizonenko SV3.

Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota.

Martin R1, Makino H2, Cetinyurek Yavuz A1, Ben-Amor K1, Roelofs M1, Ishikawa E2, Kubota H2, Swinkels S1, Sakai T2, Oishi K2, Kushiro A2, Knol J1,3

Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

Cong X1, Xu W2, Romisher R2, Poveda S2, Forte S2, Starkweather A2, Henderson WA3.

Intervention strategies for cesarean section-induced alterations in the microbiota-gut-brain axis.

Moya-Pérez A1, Luczynski P1, Renes IB1, Wang S1, Borre Y1, Anthony Ryan C1, Knol J1, Stanton C1, Dinan TG1, Cryan JF1.

The Postpartum Maternal and Newborn Microbiomes.

Mutic AD1, Jordan S, Edwards SM, Ferranti EP, Thul TA, Yang I.

The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth.

Chernikova DA1, Madan JC2,3, Housman ML4, Zain-Ul-Abideen M5, Lundgren SN3, Morrison HG6, Sogin ML6, Williams SM7, Moore JH8, Karagas MR3, Hoen AG9.

Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner.

Lundgren SN1, Madan JC2,3, Emond JA4, Morrison HG5, Christensen BC1,6,7, Karagas MR1,3,7, Hoen AG8,9,10,11.

Immunological Effects of Human Milk Oligosaccharides.

Triantis V1, Bode L2, van Neerven RJJ1,3.

Human Milk Oligosaccharides and Immune System Development.

Plaza-Díaz J1,2,3, Fontana L4,5,6, Gil A7,8,9,10.

Fucosylated oligosaccharides in mother’s milk alleviate the effects of caesarean birth on infant gut microbiota

Korpela K1,2, Salonen A3, Hickman B3, Kunz C4, Sprenger N5, Kukkonen K6, Savilahti E7, Kuitunen M7, de Vos WM3,8.

Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements.

Pärnänen K1, Karkman A2,3,4, Hultman J5, Lyra C5, Bengtsson-Palme J2,3,6, Larsson DGJ2,3, Rautava S7, Isolauri E7, Salminen S8, Kumar H8, Satokari R9, Virta M5.

Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations.

Ho NT1, Li F2, Lee-Sarwar KA3,4, Tun HM5,6, Brown BP7,8,9, Pannaraj PS10, Bender JM10, Azad MB11, Thompson AL12, Weiss ST4, Azcarate-Peril MA13,14, Litonjua AA15, Kozyrskyj AL5, Jaspan HB8,9, Aldrovandi GM2, Kuhn L16.

Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants.

Korpela K1,2, Salonen A3, Vepsäläinen O4, Suomalainen M4, Kolmeder C5, Varjosalo M6, Miettinen S6, Kukkonen K7, Savilahti E8, Kuitunen M8, de Vos WM3,9

Microbial Community Dynamics in Mother’s Milk and Infant’s Mouth and Gut in Moderately Preterm Infants.

Biagi E1, Aceti A2, Quercia S1, Beghetti I2, Rampelli S1, Turroni S1, Soverini M1, Zambrini AV3, Faldella G2, Candela M1, Corvaglia L2, Brigidi P1.

Metabolic adaptation in the human gut microbiota during pregnancy and the first year of life.

Gosalbes MJ1, Compte J2, Moriano-Gutierrez S3, Vallès Y4, Jiménez-Hernández N1, Pons X5, Artacho A5, Francino MP6.

Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development.

Lee H1, Padhi E1, Hasegawa Y1, Larke J2, Parenti M2, Wang A1, Hernell O3, Lönnerdal B2, Slupsky C1,2.

Microbial Biomarkers of Intestinal Barrier Maturation in Preterm Infants.

Ma B1, McComb E1, Gajer P1, Yang H1, Humphrys M1, Okogbule-Wonodi AC2, Fasano A3,4, Ravel J1, Viscardi RM5.

The Human Microbiota and Obesity: A Literature Systematic Review of In Vivo Models and Technical Approaches.

Int J Mol Sci. 2018 Nov 30;19(12). pii: E3827. doi: 10.3390/ijms19123827.
Carrera-Quintanar L1, Ortuño-Sahagún D2, Franco-Arroyo NN3, Viveros-Paredes JM4, Zepeda-Morales AS5, Lopez-Roa RI6.

One Health, Fermented Foods, and Gut Microbiota.

Bell V, Ferrão J, Pimentel L, Pintado M, Fernandes T.
Foods. 2018 Dec 3;7(12). pii: E195. doi: 10.3390/foods7120195. Review.