Xiang Study: an association of breastmilk composition with maternal body mass index and infant growth during the first 3 months of life

Aim of the Study

This study aimed to establish a mother and child cohort in the Chinese population, and investigate human breastmilk (HBM) composition and its relationship with maternal body mass index (BMI) and infant growth during the first 3 mon of life.

Subjects & Methods

A total of 101 Chinese mother and infant pairs were included in this prospective cohort. Alterations in the milk macronutrients of Chinese mothers at 1 mon (T1), 2 mon (T2), and 3 mon (T3) lactation were analyzed. HBM fatty acid (FA) profiles were measured by gas chromatography (GC), and HBM proteomic profiling was achieved by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS).

Results

During the first 3 months of lactation (P < 0.05), significant decreases were determined in the levels of total energy, fat, protein, and osteopontin (OPN), as well as ratios of long-chain saturated FA (including C16:0, C22:0 and C24:0), monounsaturated FA (including C16:1), and n-6 poly unsaturated FA (PUFA) (including C20:3n-6 and C20:4n-6, and n-6/n-3). Conversely, butyrate, C6:0 and n-3 PUFA C18:3n-3 (α-linolenic acid, ALA) were significantly increased during the first 3 mon (P < 0.05). HBM proteomic analyses distinguished compositional protein differences over time (P = 0.001). Personalized mother-infant analyses demonstrated that HBM from high BMI mothers presented increased total energy, fat, protein and OPN, and increased content of n-6 PUFA (including C18:3n-6, C20:3n-6 and n-6/n-3 ratio) as compared with low BMI mothers (P < 0.05). Furthermore, BMI of the mothers positively correlated with the head circumference (HC) of infants as well as the specific n-6 PUFA C20:3n-6 over the 3 time points examined. Infant HC was negatively associated with C18:0.

Conclusion

This study provides additional evidence to the Chinese HBM database, and further knowledge of FA function. It also helps to establish future maternal strategies that support the healthy growth and development of Chinese infants.

Read Full Publication Below

Experts' publications

science animations

Science Animation - Osteopontin (OPN)

Science Animation - Human Milk Oligosaccharides (HMO)

Science Animation - Synbiotics and Infant Health

Scientific Animations - MFGM: Milk Fat Globule Membrane

Science Animation - Fatty Acids in the SN2 Position

Science animation - Lactoferrin